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Abstract This paper presents the implementation of an
adaptive smoothed particle hydrodynamics (ASPH) method
for high strain Lagrangian hydrodynamics with material
strength. In ASPH, the isotropic kernel in the standard SPH
is replaced with an anisotropic kernel whose axes evolve au-
tomatically to follow the mean particle spacing as it varies
in time, space, and direction around each particle. Except
for the features inherited from the standard SPH, ASPH can
capture dimension-dependent features such as anisotropic
deformations with a more generalized elliptical or ellip-
soidal influence domain. Two numerical examples, the im-
pact of a plate against a rigid surface and the penetration of a
cylinder through a plate, are investigated using both SPH and
ASPH. The comparative studies show that ASPH has better
accuracy than the standard SPH when being used for high
strain hydrodynamic problems with inherent anisotropic de-
formations.

Keywords Smoothed particle hydrodynamics · Adaptive
smoothed particle hydrodynamics · Isotropic kernel ·
Anisotropic kernel · High strain hydrodynamics

PACS 46.15.-x, 83.10.Rs, 83.50.-v

1 Introduction

High strain hydrodynamics is generally characterized by the
presence of shock waves, intense localized materials re-
sponse, and impulsive loadings. Numerical simulation of
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high strain hydrodynamics with material strength such as
high velocity impact (HVI) and penetrations is one of the
formidable but attractive tasks in computational solid me-
chanics. Most of the wave propagation hydro-codes use tra-
ditional grid-based methods such as finite difference meth-
ods (FDM) and finite element methods (FEM) to simulate
high strain hydrodynamics. Some of them are associated
with advanced features, which attempt to combine the best
advantages of FDM and FEM. Examples include arbitrary
Lagrange–Eulerian (ALE) coupling and coupling Eulerian–
Lagrangian (CEL). Though many successful achievements
have been made using these methods, some numerical diffi-
culties still exist. These numerical difficulties generally arise
from large deformations, large inhomogeneities, and moving
interfaces, free, or movable boundaries [1–6].

Recently growing interest has been focused on meshless
methods, which are regarded as alternatives for the tradi-
tional grid-based numerical methods to simulate high strain
hydrodynamics with material strength [7, 8]. Among the
meshless methods, smoothed particle hydrodynamics (SPH)
method [9, 10] is unique due to its special features as a mesh-
less, particle-oriented method with pure Lagrangian nature.
Since its invention to solve astrophysical problems in three-
dimensional open space, SPH has been extensively studied
and widely applied to different problems [11–14]. Libersky
and his co-workers carried out the pioneering work of apply-
ing the SPH method to high strain hydrodynamic problems
including HVI, fracture, and fragmentation [12, 15]. John-
son et al. [16, 17] proposed a normalized smoothing function
(NSF) for axisymmetric problems based on the condition of
uniform strain rate in the application of SPH to impact prob-
lems. Attaway et al. worked in coupling the SPH processor
with a transient-dynamics FEM code, PRONTO, in which
high strain areas that typically tangle or break conventional
finite element meshes were resolved using the SPH method
[18, 19].

The standard SPH method uses an isotropic smoothing
kernel, which is characterized by a scalar smoothing length.
One of the problems associated with the standard SPH is that
the isotropic kernel of SPH can be seriously mismatched to
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the anisotropic volume changes that generally occur in many
problems. To closely match the anisotropic volume changes,
an anisotropic smoothing kernel that can be characterized by
a matrix (in a two-dimensional space) or a tensor (in a three-
dimensional space) smoothing length can be efficacious.
This leads to the development of the adaptive smoothed par-
ticle hydrodynamics (adaptive SPH or ASPH) in which the
smoothing length can be adapted with the volume changes
or other dimension-dependent features. The idea of using
anisotropic kernel with SPH dates back to Bicknell and
Gingold [20]. Shapiro et al. [21] first began investigating
a generalized approach using an ellipsoidal kernel in SPH.
Fulbright et al. [22] also presented a three-dimensional SPH
designed to model systems dominated by deformation along
a preferential axis using spheroidal kernels. Later Shapiro
et al. [23] systematically introduced anisotropic kernels, ten-
sor smoothing, and shock tracking to SPH to create ASPH.
Owen et al. [24] presented an alternative formulation of the
ASPH algorithm for evolving anisotropic smoothing ker-
nels. Except for problems with anisotropic deformations, the
concept of elliptical kernel has also been applied to channel
flows with very large length width ratio for saving compu-
tational efforts [25]. The numerical results presented in the
references further demonstrated that ASPH has better per-
formance than the standard SPH in terms of resolving ability
for a wide range of problems.

This paper presents the application of ASPH to simulat-
ing large strain hydrodynamics with material strength. The
developed ASPH code is examined by two example prob-
lems, the impact of a plate against a rigid surface and the
penetration of a cylinder through a plate. These two exam-
ple problems are also investigated using the standard SPH
method for comparison. The results obtained from numeri-
cal simulations are also compared with available experimen-
tal data, and data from other sources.

2 High strain hydrodynamics with material strength

The governing equations for high strain hydrodynamics with
material strength are based on the conservation of mass, mo-
mentum, and energy as follows
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where the scalar density ρ, and internal energy e, the ve-
locity component vα , and the total stress tensor σαβ are the
dependent variables. The spatial coordinates xα and time t
are the independent variables. The summation in Eq. (1) is
taken over repeated indices, while the total time derivatives
are taken in the moving Lagrangian frame.

The total stress tensor σαβ is made up of two parts, one
part of isotropic pressure p and the other part of viscous
shear stress τ

σαβ = −pδαβ + ταβ. (2)

The isotropic pressure can be obtained using an equation
of state (EOS) which describes the relationship of pressure
to density and energy. Examples of EOS for solids include
Mie-Gruneisen EOS [26], Tillotson EOS [27], and other
possible choices.

The second part of shear stress in Eq. (2) is related to the
resistance of the material to the shear deformation. The con-
stitutive model, in general, permits the stress to be a function
of strain and strain rate. For the anisotropic shear stress, if
the displacements are assumed to be small, the stress rate is
proportional to the strain rate through the shear modulus.
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where η is the shear modulus, τ̇ is stress rate, and εαβ is the
strain rate tensor defined as
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where ε̄αβ is the traceless part of εαβ .
In order to get the material frame independent strain rate,

the Jaumann rate is adopted with the following constitutive
equation as

τ̇ αβ − ταγ Rβγ − τγβ Rαγ = ηε̄αβ, (5)

where Rβγ is the rotation rate tensor defined as
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The provisional von Mieses flow stress J is computed
using the shear stress

J =
√

ταβταβ. (7)

In the perfectly plastic yield model, the yield strength is
constant if the second stress invariant J exceeds the known
stress J0. The shear stresses have to be scaled back to the
yield surface

ταβ = ταβ
√

J03J 2, (8)

where J0 is determined by the Johnson–Cook model, which
describes the flow stress as a function of effective plastic
strain, effective plastic strain rate, and temperature [28].
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3 The standard SPH with isotropic kernels

In the SPH method, a set of arbitrarily distributed particles
(points) is employed to represent the state of the system and
record the movement of the system. Each particle is asso-
ciated with physical parameters as mass, density, and pres-
sure. The evolution of the system can be calculated based on
the interaction of these particles and external forces. Specif-
ically speaking, in the SPH method, a field function f and
its first derivative at a particle i can be numerically approx-
imated as the summation over the nearest neighboring par-
ticles through using a smoothing function (or kernel) W as
follows:

〈 f 〉i =
N∑

j=1

(m j/ρ j ) f j Wi j , (9)

〈∇ · f 〉i =
N∑

j=1

(m j/ρ j ) f j · ∇i Wi j , (10)

where m j and ρ j are the mass and density of particle j . N is
the total number of particles. Approximation of higher order
derivatives can be carried out by nested approximations on
lower order derivatives.

Figure 1 illustrates the standard SPH approximations
with an isotropic kernel in a two-dimensional space. Only
particles within the influence domain of the smoothing func-
tion W for particle i can contribute in the summation pro-
cess. The influence domain of the isotropic kernel is circular
with a radius of κh. V in Fig. 1 represents the problem do-
main with a surface S. The influence domain can be taken
as any suitable shape. Different shapes of smoothing func-
tion can result in different versions or implementations of
the SPH method. In the standard SPH method, the influ-
ence domain is usually taken as a circle (or a sphere in a
three-dimensional space) with a scalar smoothing length h
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Fig. 1 SPH approximations with an isotropic kernel in a two-
dimensional space
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Fig. 2 ASPH approximations in a two-dimensional space. The influ-
ence domain of particle i is an ellipse rather than a circle in SPH

and a scaling factor κ . As will be discussed in the next sec-
tion, the ASPH method employs an ellipsoidal smoothing
function with a smoothing length tensor (Fig. 2).

In the standard SPH method with a spatially and tempo-
rally variable smoothing length, the scalar smoothing length
h is usually adjusted according to the local density variation
and it is in proportion to ρ−1/d , where d is the number of di-
mensions. This is adequate for isotropic volume changes, but
is seriously mismatched to the anisotropic volume changes.
It is preferable to adjust the smoothing length to maintain a
roughly constant number of neighbor particles and therefore
to maintain the solution accuracy. One popular approach to
evolve the smoothing length is [29]

dh
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= − 1

d

h

ρ

dρ

dt
. (11)

One of the most widely used smoothing functions is the
cubic spline devised by Monaghan and Lattanzio [30]. The
cubic spline smoothing function and its first derivative are
listed as follows

W (κ, h) = αd ×
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In Eq. (12) and (13), αd = 1/h, 15/7πh2, and 3/2πh3,
respectively in one-dimensional, two-dimensional, and
three-dimensional space. κ is the distance between two par-
ticles normalized by the scalar smoothing length h

κ = r

h
= |r̄ |

h
or κ̄ = r̄

h
= (x, y, z)

h
, (14)

where r is the real distance between two particles, r̄ and κ̄
are the real and normalized position vectors.
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4 The ASPH with anisotropic kernel

The smoothing length determines the shape of the smooth-
ing function and the pattern of interpolation and therefore
it has direct influence on the efficiency of the computation
and the accuracy of the solution. In general, the local mean
interparticle spacing varies in time, space, as well as direc-
tion. The influence domain of the smoothing function should
represent the variation of the interparticle spacing. The stan-
dard SPH method with a variable scalar smoothing length
can only reflect the interparticle spacing variation in time
and space. It does not show any feature of the directional
effects. It can lose neighbor information in some directions
and is not suitable for simulating problems with anisotropic
deformations.

Based on such considerations, some models of adap-
tive smoothing particle hydrodynamics (ASPH) have been
proposed to model the deformation in different directions
[22, 24]. The ASPH models use an anisotropic algorithm
that employs an ellipsoidal smoothing function character-
ized by a different smoothing length along each axis of the
ellipsoidal. For two-dimensional cases, the influence domain
of the smoothing function is elliptical (Fig. 2). The smooth-
ing length along each axis is evolved so as to follow the vari-
ation of the local interparticle separation surrounding each
particle. By deforming and rotating the ellipsoidal smooth-
ing function so as to follow the anisotropic volume changes
associated with each particle, ASPH adapts its spatial reso-
lution scale in time, space, and direction. Hence, ASPH was
shown to significantly improve the spatial resolving capa-
bility over that of the standard SPH method for the same
number of particles used.

The main idea of the ASPH is that in three-dimensional
space, the smoothing function is of ellipsoidal shape, which
can be arbitrarily oriented. A smoothing tensor H can be
used to characterize the influence domain of the smoothing
function

H =




hxx hyx hzx

hxy hyy hzy

hxz hyz hzz



 , (15)

where hyx = hxy , hzx = hxz and hyz = hzy . H is a second
order, real and symmetric tensor. The eigenvectors of H are
the directions along the three axes of the ellipsoid and the
corresponding eigenvalues are the dimensions of the ellip-
soid along each axis. SPH can be regarded as a special case
of ASPH, with each diagonal element of H equal to h while
other elements equal to zero. Therefore, one has more free-
dom with ellipsoidal smoothing functions than one has with
spherical smoothing functions.

Similarly, the smoothing function in ASPH can be writ-
ten as a function of the tensor smoothing length H and the
normalized position vector κ̄ . In comparisons with SPH, the
relation is as follows:

SPH: κ̄ = 1
h r̄ ,

ASPH: κ̄ = 1
H · r̄ = H−1 · r̄ = G · r̄ .

(16)

The G tensor has units of the inverse of length. The cu-
bic spline and its first derivative in ASPH can therefore be
written as

W (κ, h) = αd ×
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where in one-dimensional, two-dimensional, and three-
dimensional spaces, αd = |G|, 15

7π
|G| and 3

2π
|G|. The H or

G tensor can be evolved both spatially and temporally. Owen
et al. [24] gave an expressions for evolving the G tensor
based on Eq. (11). The anisotropic volume changes repre-
sented by a smoothing ellipsoid can be transformed through
a local, linear transformation of coordinates into those in
which the underling anisotropic volume changes appear to
be isotropic. For the kernel and particle approximation, as
long as the quantities are expressed in terms of the normal-
ized position vector κ̄ rather than the explicitly using h, the
SPH and ASPH dynamic equations are identical.

The smoothing function in both SPH and ASPH needs
to be symmetrized if the smoothing lengths for each parti-
cle are spatially different. The symmetrization techniques in
SPH and ASPH are also similar [8, 11, 24].

5 Discretized equations of motion for high strain
hydrodynamics

Considering the artificial viscosity effect i j [11], a set of
particle equations of motion for simulating high strain hy-
drodynamics can be can be summarized as follows
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Equation (19) can be integrated using some standard
methods such as Leapfrog method. The particle equations



ASPH for high strain hydrodynamics 25

for strain rate tensor and rotation rate tensor can be written
as
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6 Numerical examples

A series of numerical tests for simulating hydrodynamics
with material strength were carried out using ASPH. The
ASPH results were compared with the results obtained using
the standard SPH method and other available experimental
data as well as the data from other sources. Presented in this
section are two typical cases. One is a cylinder impacting on
rigid surface; another is a cylinder penetrating through on a
plate. For these two examples, the coefficients for the linear
and quadratic terms in the Monaghan-type artificial viscosity
[11] were taken as unity, respectively.

6.1 A cylinder impacting on a rigid surface

In this example, an Armco iron cylinder (actually a plate in
a two-dimensional space) traveling at 200 m/s impacted on
a rigid surface. The plate was 2.546 cm long, and 0.760 cm
wide. The motion was normal to the rigid surface. Libersky
and Petschek [15] also numerically simulated this example
using the standard SPH method. In this work, the Armco iron
plate was modeled as an elastic-perfectly plastic material.
The Mie–Gruneisen equation of state was employed. The
material properties of the Armco iron and the parameters for
the Mie–Gruneisen equation of state were the same as those
in [15].

Sixty-seven particles were initially distributed along the
length and 20 particles along the diameter for both the SPH
and ASPH simulations. The rigid surface was distributed us-
ing 19 layers of virtual particles mirrored on the other side
of the rigid surface. There were a total of 1340 real parti-
cles and 380 ghost particles. The cylinder was initially in
contact with the rigid surface. In the SPH simulation, the
initial smoothing length was slightly bigger (1.2 times) than
the initial particle spacing so that in each direction a cer-
tain particle can have 5 effective neighbor particles includ-
ing itself. In the ASPH simulation, the G tensor field was
smoothed every two time steps, while the initial h1 and h2
were equal to 1.2 times the initial particle spacing in each
dimension.

It was observed that the SPH simulation reached the
steady state when the material nearly stopped deforming af-
ter around 90 µs. Figure 3 shows the steady state particle

Fig. 3 Steady state particle distributions (after 90 µs) obtained using
SPH for the example of a cylinder impacting on a rigid plate

Table 1 Final bar height and width from different sources

Real time Final bar height Final bar width
(µs) (cm) (cm)

SPH results 2.09 1.93
ASPH results 2.14 1.62
Results by Libersky 2.18 1.52
Results by Johnson 2.11 1.70

distributions using SPH. There are voids formed around the
centre of the plate near the impact end. In the steady state,
the length and diameter of the cylinder were 20.90 mm and
19.31 mm, respectively.

The ASPH simulation also reached the steady state
after around 90 µs. The length and diameter of the cylin-
der in the steady state were 21.36 cm and 16.16 cm, re-
spectively. The particle distribution clearly shows that the
particles are flattened along the direction of the impact.
This obviously shows the anisotropy of the deformations.
Different from the corresponding SPH plots, no void is
formed around the centre of the plate near the impact
end. This is an obvious advantage over the standard SPH
method.

Table 1 shows the final bar height and width. The pre-
sented SPH and ASPH results were compared with the SPH
results by Libersky and Petschek [15] and the results by
Johnson using EPIC-2 [16, 17]. The final bar heights do
not vary too much, but the final bar widths from differ-
ent sources are quite different. The presented ASPH re-
sults show a good agreement with the results obtained by
Johnson. Though the numerical accuracy needs to be guar-
anteed by convergence tests, the good agreement with the
experiment justifies the numerical model. Detailed conver-
gence study of ASPH is a subject of further works.
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Table 2 Lapsed CPU time

Real time SPH CPU time ASPH CPU time
(µs) (s) (s)

5 39.75 101.28
10 76.938 223.13
15 115.74 365.52
20 150.08 556.18
25 207.35 694.09
30 220.69 890.96
40 290.27 1249.3
50 365.02 1607.6
60 433.38 1804.8
70 506.23 2053.1
80 577.84 2275.7
100 712.54 2765.9

Table 2 shows the CPU time elapsed for both the SPH
and ASPH simulations. The elapsed CPU times for the
ASPH simulation were longer than those for the SPH simu-
lation. There are some possible reasons. Firstly, in the ASPH
simulation, the G tensor needs to be smoothed to stablize the
numerical scheme every several steps. This smoothing pro-
cess is quite time-consuming. Secondly, the anisotropy of
the volume change leads to a compression of the smoothing
length in some direction, which yields a smaller component
of the smoothing length in that direction. The time step used
in the integration is closely related to the smallest smoothing
length component, and therefore becomes very small to be
efficient.

6.2 HVI of a cylinder penetrating a plate

In this example, SPH and ASPH were applied to simulate the
penetrating process of an infinitely long Al-cylinder through

Fig. 4 Steady state particle distributions (after 90 µs) obtained using
ASPH for the example of a cylinder impacting on a rigid plate

Fig. 5 Initial particle distribution in the vicinity of the contact area for
both the SPH and ASPH simulation of a cylinder impacting on a plate.
The particles near both ends of the plate were not plotted

an infinitely long Al-plate. Since both the cylinder and the
plate were infinitely long, the numerical simulation can be
carried out on any middle section, therefore the problem
can be simplified as a 2D problem. Hiermaier et al. [31]
had done numerical simulations for this example in planar
symmetry using their SPH code, SOPHIA. The cylinder was
of 1.0 cm diameter. The plate was 0.4 cm thick. The plate
length was of 10 cm. All particles were initialized as squares
of 0.02 cm in side dimensions. The particles in the cylinder
were arranged in circumferential rings as this gives a most
realistic representation of the geometry. The particles in the
plate were arranged in a rectangular Cartesian array (Fig. 5).
There were 500 particles along the length and 20 particles
along the thickness of the plate. There were 1956 particles
in the cylinder and 10,000 particles in the plate, for a total of
11956 particles. The cylinder were initially in contact with
the center of the plate.

The simulations were run to 20 µs. The impact speed of
the cylinder was 6180 m/s. The Tillotson equation of state
was used in this example. The material properties for alu-
minum can be found in Hiermaier et al. [31].

In the SPH simulation, the initial smoothing length was
also set to be 1.2 times the particle spacing. Figure 6 shows
the particle distributions obtained by the SPH simulation.
The symmetry of the problem was well preserved. Figures 7
and 8 show the close-up view of the particles near the pen-
etrated edge of the plate and the frontal region of the de-
bris cloud, respectively. The outer layer of the debris cloud
was made of the material from the plate, and the inner layer
of the debris cloud was made up of the material from the
cylinder.

In the ASPH simulation, the initial h1 and h2 were equal
to 1.2 times the initial particle spacing in each dimension.
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SPH ASPH

Fig. 6 Particle distributions at 20 µs obtained using SPH and ASPH for the example of an aluminium cylinder penetrating an aluminium plate

SPH ASPH

Fig. 7 Close-up view of the particle distributions at 20 µs near the penetrated edge of the plate for the example of an aluminium cylinder
penetrating an aluminium plate

SPH ASPH

Fig. 8 Close-up view of the frontal region of the debris cloud at 20 µs

Figure 6 shows the particle distribution obtained by the
ASPH simulation. Figures 7 and 8 show the close-up view
of the particles near the penetrated edge of the plate and the
frontal region of the debris cloud, respectively. In compari-
son with the SPH simulation, the orientation and anisotropy
of the deformation of the particles can be clearly seen. This
is an obvious advantage of using ASPH for HVI problems,
which are associated with inherent anisotropic deformations.

With changing orientation and anisotropy of volume, the
ASPH method can give better predictions than SPH method.

Just as discussed in the above example, an obvious disad-
vantage of ASPH is that the computational expense of ASPH
is much higher than that of SPH. Again, this is because in
ASPH simulation, the anisotropic volume change leads to
greatly reduced smoothing length in the compressed direc-
tion, which determines the time step used in the simulation.
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Table 3 Comparison of crater diameters and shapes of the debris cloud
[31]

Experimenta SPHa ASPH SPH

Dc (cm) 2.75–3.45 3.5 3.15 3.35
L/W 1.39 1.11 1.38 1.33

aThe experimental data and SPH results were obtained from Hiermaier
et al.

In order for the ASPH computation to reach the same
interested time instant, it is necessary to take a larger number
of smaller time steps.

The results of some key overall dimensions of the ob-
jects are shown in Table 3 together with the experimental
data. In Table 3, Dc is the crate diameter, and L/W is the
ratio of debris cloud length to debris cloud width. The ex-
perimental data was obtained from Hiermaier et al. [31], in
which the crater diameter was given to be 2.75 cm when
including crater lip, while 3.45 cm excluding crater lip. It
should be noted that the experiment is a normal impact of a
sphere on a plate, which is a three-dimensional axisymmet-
ric problem. The numerical computations are all based on
two-dimensional planar symmetric simulations. Hiermaier
et al. [31] assumed that this is a probable cause of the dis-
crepancies between their SPH simulation results and the ex-
perimental data. Except that, different SPH approximation
schemes can lead to different numerical results, which can
be closer to the experimental data. As shown in Table 3, the
presented SPH and ASPH simulation results and the exper-
imental data are in an acceptably agreement. The ASPH re-
sults, however, demonstrated much better accuracy.

7 Conclusion

High strain hydrodynamics characterized by the presence of
strong shock waves, intense localized materials response,
and impulsive loadings can usually lead to large defor-
mation, which is generally anisotropic in different direc-
tions. The standard SPH method is associated with a scalar
smoothing length, which can only reflect the interparticle
spacing variation in time and space, but cannot show any fea-
ture of the directional effects. It can lose neighbor informa-
tion in some directions and can have comparatively poorer
accuracy for simulating high strain hydrodynamic problems
with anisotropic deformations. ASPH replaces the isotropic
kernel in the standard SPH with an anisotropic kernel whose
axes evolve automatically to follow the mean particle spac-
ing as it varies in time, space, and direction around each par-
ticle. It is a better choice to simulating high strain hydrody-
namics with anisotropic deformations.

This paper presented the extension of ASPH to high
strain Lagrangian hydrodynamics with material strength.
Two numerical examples, the impact of a plate against a
rigid surface, and the penetration of a cylinder through a
plate, were investigated using both SPH and ASPH. It was

demonstrated that ASPH has much better performance than
the standard SPH in simulating high strain hydrodynam-
ics. ASPH can capture dimension-dependent features such
as anisotropic deformations. ASPH, however, suffers from
bigger computational expense than the standard SPH.
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